This system, sometimes named as MT, is part of the very known computational linguistics field. It is based in the investigation of computer softwares, capable of translating texts, speeches… done by natural language porcessing. The technique of this system is effective with formal language.
The history of Machine Translation starts in the early 50s with an […]
Q.3: MACHINE TRANSLATION
5 de mayo, 2009 | iraya
Three research topics (Q2)
5 de mayo, 2009 | Saioa Batiz
-Question answering: This device gives us the chance to obtain an immediate answer to a question posed in natural language, in the web. To answer the question the computer may use information either from a data base or a text collection … Continue reading →![]()
Uso de Vos. Estadísticas generales.
5 de mayo, 2009 | albagutierrez
Estadísticas generales. Fuente CREA
Año
%
Casos
1976
8.99
303
2002
8.63
291
1985
8.60
290
1986
8.30
280
1981
7.03
237
1990
6.46
218
1995
6.26
211
1980
5.87
198
1982
5.84
197
Otros
33.97
1145
País
%
Casos
ARGENTINA
55.49
2589
ESPAÑA
18.71
873
URUGUAY
6.02
281
NICARAGUA
4.03
188
PARAGUAY
3.68
172
COSTA RICA
3.64
170
MÉXICO
2.50
117
VENEZUELA
1.73
81
GUATEMALA
1.07
50
Otros
3.08
144
Tema
%
Casos
7.- Ficción.
75.81
3549
9.- Oral.
7.04
330
2.- Ciencias sociales, creencias y pensamiento.
6.66
312
4.- Artes.
4.01
188
5.- Ocio, vida cotidiana.
3.54
166
3.- Política, economía, comercio y finanzas.
1.60
75
6.- Salud.
0.74
35
8.- Miscelánea.
0.36
17
1.- Ciencia y Tecnología.
0.19
9
[…]
Uso de “vos.” Estadísticas CREA.
5 de mayo, 2009 | albagutierrez
Estadísticas “vos” en Argentina. Obtenido de CREA
Año
%
Casos
1963
27.00
266
1972
10.45
103
1854
10.35
102
1974
7.81
77
1949
7.10
70
1961
5.48
54
1970
4.77
47
1964
4.36
43
1872
2.94
29
Otros
19.69
194
País
%
Casos
ARGENTINA
100
.00
1058
Tema
%
Casos
12.- Prosa narrativa
74.76
791
13.- Prosa dramática
12.19
129
22.- Verso narrativo
4.25
45
10.- Prosa jurídica
3.78
40
15.- Prosa científica
1.89
20
23.- Verso dramático
1.41
15
19.- Prosa histórica
1.13
12
21.- Verso lírico
0.37
4
16.- Prosa de sociedad
0.18
2

Day 5
5 de mayo, 2009 | Lydia Ortega
The last week we had our second meeting with Joseba. He told us that we had to change some parts of our project. Today we are going to focus on changing those parts and each of us have to chose an example to work on.
Today i would like to begin to write articles with information […]
Yorick Wilks (1st Questionnaire).
4 de mayo, 2009 | Aitor Macia
Yorick Wilks works as a Professor of Computer Science at the University of Sheffield. There he directs the Institute for Language, Speech and Hearing. He received his MA and PhD (1968) from Pembroke College, Cambridge. He has also taught or researched at Stanford, Edinburgh, Geneva, Essex and New Mexico State Universities. His interests are artificial intelligence and […]
“-GABE”
4 de mayo, 2009 | naiararey
Taldean aztergaitzat izan dogun parasufijo honi buruz topatu genun ikerketa lan interesgarri hau aurkeztuko deutsuet: XGabe. Lan hau hitz elkarketan oinarrituta badago ere (eratorpena lantzen baikabilz) oso aberasgarria izan da. EHU-k eginiko lana dala esan beharra dago. Era berean, Euskaltzaindiak Hitz-elkarketa/4. Hitz elkartuen osaera eta idazkera liburuan, hitz elkartuen eraketari dagokionez, gabe-k atal oso bat dauala nabarmentzekoa […]![]()
Q.3: Natural Language Interface, Question Answering (QA)
4 de mayo, 2009 | iraya
An Interface is an style and a great example of that style is the very said “natural language”. This style permits the contact and dialogue between human users and a computer. But we can say that sometimes the natural language is considered as too extreme fot the interface style to understand, so the user must […]
QUESTIONNAIRE 2: Topics list
4 de mayo, 2009 | Aida Aguilar
Common Language Resources and Technology Infrastructure
Computational Semantis
The intelligent Library Assistant
Natural logic and inference
Semantic Taxonomy Induction
Detecting Contradiction in Text
Dialoging NPCs in natural game environments
Lexikoaren behatokia
Semantikoki etiketatutako euskarazko corpusa
Shallow Semantic Parcing

Informazio berreskurapena
4 de mayo, 2009 | estiren txokoa
Informazio berreskurapena, ingelesez “Information Retrieval” bezala ezagutua, dokumentuetan, datu baseetan edota metadatoetan burutzen den informazioaren bilketaren zientzia dugu. Bilaketa hau interneten zein intraneten burutu daiteke eta testu, irudi, soinu eta datuei lotuta egon daiteke. IR (Information Retrieval), disziplinen arteko ikerketa da, eta hainbeste disziplina biltzen ditu bere baitan non askotan, informazio partziala bakarrik jasotzen dugun, ikuspuntu batetik edo bestetik […]![]()
Martin Kay (1st questionnaire).
4 de mayo, 2009 | Aitor Macia
Martin Kay is a computer scientist. He is known for his work in computational linguistics. In the year 1958 he started to work at the Cambridge Language Research Unit , which is one of the earliest centers for research in what is now known as Computational Linguistics. Then, he moved to Santa Monica and became head of […]
Informazio berreskurapena (Q.2)
4 de mayo, 2009 | Jone Flores
Lengoaia Naturalarekin lotzen de konplexutasuna handiagotu egiten da informazio testuala berreskuratu nahi dugunean. Horregatik asko erabiltzen dira LNP teknikak Informazio Testualaren Berreskurapenaren arloan. Alde batetik dokumentuen edukiaren deskripzioa errazteko, eta beste aldetik, erabiltzailearen kontsultaren errepresentazioa egiteko. Modu honetan bi deskripzioak konparatu egiten dira eta erabiltzaileari gehien komeni zaiona aurkezten zaio. Informazio Berreskurapen sistema batek honako […]![]()